Galactic and solar radiation exposure to aircrew during a solar cycle.
نویسندگان
چکیده
An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.
منابع مشابه
Modelling of aircrew radiation exposure from galactic cosmic rays and solar particle events.
Correlations have been developed for implementation into the semi-empirical Predictive Code for Aircrew Radiation Exposure (PCAIRE) to account for effects of extremum conditions of solar modulation and low altitude based on transport code calculations. An improved solar modulation model, as proposed by NASA, has been further adopted to interpolate between the bounding correlations for solar mod...
متن کاملChapter 21: Summary of Atmospheric Ionizing AIR Research: SST-Present
The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosm...
متن کاملCOSMIC RADIATION IN COMMERCIAL AVIATION Professor
This paper reviews the current knowledge of cosmic radiation and its applicability to commercial aviation. Galactic cosmic radiation emanates from outside the solar system, while occasionally a disturbance in the sun’s atmosphere leads to a surge in radiation particles. Protection is provided by the sun’s magnetic field, the earth’s magnetic field, and the earth’s atmosphere. Dose rates are dep...
متن کاملPrediction of solar ultraviolet intensity by using Fuzzy Logic in the north-west of Iran
Introduction: Solar energy is one of the free sources, clean and environmentally friendly energy. Sun is the most important source of natural ultraviolet radiation that has a major role in the life of living beings. Industrial and medical applications of ultraviolet radiation have been clearly proven, like the production of vitamin D or treatment of many diseases, and also har...
متن کاملMethods for estimating radiation doses received by commercial aircrew.
INTRODUCTION Radiation doses received onboard aircraft are monitored in Europe to protect aircrew in accordance with a European Union directive. The French Aviation Authorities have developed a system called SIEVERT, using calculation codes to monitor effective radiation doses. METHODS For the galactic cosmic ray component, a 3-D world map of effective dose rates is computed using available o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiation protection dosimetry
دوره 102 3 شماره
صفحات -
تاریخ انتشار 2002